Existence of front solutions for a nonlocal transport problem describing gas ionization
نویسندگان
چکیده
We discuss a moving boundary problem arising from a model of gas ionization in the case of negligible electron diffusion and suitable initial data. It describes the time evolution of an ionization front. Mathematically, it can be considered as a system of transport equations with different characteristics for positive and negative charge densities. We show that only advancing fronts are possible and prove short-time well-posedness of the problem in Hölder spaces of functions. Technically, the proof is based on a fixed point argument for a Volterra type system of integral equations involving potential operators. It crucially relies on estimates of such operators with respect to variable domains in weighted Hölder spaces and related calculus estimates.
منابع مشابه
Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
متن کاملMultiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملExistence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem
In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0
متن کاملM ar 2 00 8 UNIQUENESS RESULTS FOR NONLOCAL HAMILTON - JACOBI EQUATIONS
We are interested in nonlocal Eikonal Equations describing the evolution of interfaces moving with a nonlocal, non monotone velocity. For these equations, only the existence of global-in-time weak solutions is available in some particular cases. In this paper, we propose a new approach for proving uniqueness of the solution when the front is expanding. This approach simplifies and extends exist...
متن کامل